Using Docker
Compose to Deploy
a Multi-Application
NET System

] By Kevin Campusano
: (/team/kevin-

campusano/)
July 13, 2024

(team/kevin-
campusano/)

This post was co-authored by Juan Pablo Ventoso

(/team/juan-pablo-ventoso/)

conference194(/blo
database178(/blog/
ruby165(/blog/tags,
ecommerce158(/blc
javascript143(/blog,
visionport142(/blog
perl115(/blog/tags/|

open- 112(/blog/tag
source source/)

sysadmin101(/blog/
tips101(/blog/tags/1

All Tags
(/blog/tags/)



We recently developed a system that involved several
runtime components. It was an ecommerce site that
included a database, a web API, an admin control
panel web app, and a frontend SPA
(https://developer.mozilla.org/en-
US/docs/Glossary/SPA).

There are many ways to deploy such a system. For us,
we wanted the infrastructure to be easily replicable
for multiple environments with slightly different
configurations. We wanted to be able to have, for
example, a production and a staging version that
could be deployed easily, with minimal configuration
changes. We also wanted the infrastructure to be
captured in files and version controlled, to further
help replicability and maintainability.

With all that in mind, Docker Compose

(https://docs.docker.com/compose/) seemed like

an ideal option. We could author a series of
configuration files, parameterize environment-specific
changes and, with a single command, we could spin
up a whole environment to run the various
applications within the system.

In this blog post, I'll explain how we did that using a

demo .NET (https://dotnet.microsoft.com/en-us/)

code base that has a similar set of components. Let’s
get started.

Archive

Posts by

date
(/blog/archive/)
Posts by

author
(/blog/authors/)




Getting familiar with the demo
project

In .NET terms, our demo code base is organized as a
solution with multiple projects

(https://learn.microsoft.com/en-
us/visualstudio/ide/solutions-and-projects-in-

visual-studio?view=vs-2022). Two of those projects

are ASP.NET web applications

(https://dotnet.microsoft.com/en-

us/apps/aspnet/web-apps): a Razor Pages
(https://learn.microsoft.com/en-

us/aspnet/core/razor-pages/?view=aspnetcore-

8.0&tabs=visual-studio) web app (the admin portal),
and an MVC Web API
(https://learn.microsoft.com/en-
us/aspnet/core/tutorials/first-web-api?

view=aspnetcore-8.0&tabs=visual-studio). The

rest are class libraries
(https://learn.microsoft.com/en-
us/dotnet/standard/class-libraries) that define the
core domain logic, tests, and other utilities. For

deployment purposes, the web application projects
are the interesting ones, as they produce executables
that actually need to run as processes in the server.
So, including the database, our demo system has
three runtime components:

1. The database.
2. The admin portal.

3. The web API.



In the world of Docker (https://www.docker.com/),

that would translate into three separate containers

(https://www.docker.com/resources/what-
container/). Considering Docker Compose, that

means three separate services
(https://docs.docker.com/compose/compose-

file/05-services/).

Throughout this post, we will, step by step, build a
compose.yaml

(https://docs.docker.com/compose/compose-

application-model/), a set of Dockerfiles

(https://docs.docker.com/reference/dockerfile/),
and other configuration files which can be used with
Docker Compose to deploy our system.

You can find the system'’s source code on GitHub
(https://github.com/megakevin/end-point-blog-
dotnet-8-demo). The final version of the deployment
files we'll build in this article are also on GitHub
(https://github.com/megakevin/end-point-blog-
dotnet-docker-deploy).

Including the code base
repository as a Git submodule

Considering the separation of our components, the
reasons for the organization of our deployment
configuration files and our code base starts to
become apparent. The deployment files will live in
their own repository. They do need access to the
system'’s source code, though, in order to build and
run the apps. And that source code lives in its own
repo. So, the deployment repository will include a



source subdirectory, which will be a Git submodule

(https://git-scm.com/book/en/v2/Git-Tools-

Submodules) that points to the repository where the
system'’s source code is stored.

Here's the file structure that we're aiming for:

compose.yaml
the various dockerfiles...
source
I: vehicle-quotes.sln
the varous projects...
any other files and directories...

Including a Git repository inside another Git repository
as a submodule is easy. In our case, we already have
the parent Git repo, which is the one where the
deployment config files live. To add the source code
repo to it, we run a command like this:

git submodule add git@github.com:megakevin/end-point-blog-
4 G >

Pretty straightforward. The command is calling git
submodule add and passing it the location of the repo
on GitHub and the directory in which to clone
(https://git-scm.com/docs/git-clone) it. That's it. As

a result of that command, Git will have created a new
source directory with the contents of the end-point-
blog-dotnet-8-demo repository, and a .gitmodules file
with contents like these:

[submodule "source"]
path = source
url = git@github.com:megakevin/end-point-blog-dotnet-8-d

4 4

As you can see, this file contains the information Git
needs to know that this repo has a submodule, where
it is, and where it comes from.



Deploying the database

Let's begin actually building out our system
components with the database. Our apps use a
PostgreSQL database to store information. Luckily for
us, getting a PostgreSQL database up and running
with Docker Compose is easy. All it takes is a
compose.yaml file like this:

# ./compose.yaml

services:
# This is the name of the service: "db". Other containen
# hostname when they need to interact with it.
db:
# The container will be based in the "16.3-bookworm" n
# PostgreSQL image that's available in Docker Hub
image: postgres:16.3-bookworm
# Always restart the container automatically if it eve
# reason.
restart: always
# Makes the database accessible at port 5432.
ports:
- 5432:5432
# Stores the PostgreSQL data files in a docker volume
# lost when the container stops or restarts.
volumes:
- db-postgres-data:/var/lib/postgresql/data
# Sets some basic configuration for the initial databg
# instance: its name, and a pair of credentials to acg
environment:
- POSTGRES_DB=vehicle_quotes
- POSTGRES_USER=vehicle_quotes
- POSTGRES_PASSWORD=password

# Defines the Docker volume that the db service uses to sf
volumes:
db-postgres-data:

4 4

This is a very standard definition of a Docker Compose
service. We called it db, made it available via the
standard PostgreSQL port ( 5432 ), and set some basic
configurations for it. Check out the PostgreSQL
image’s page in Docker Hub

(https://hub.docker.com/_/postgres) to see more

complicated use cases.



To bring it to life, we can run docker compose up -d in
the directory where we've located the compose.yaml
file. Running that command will prompt Docker to
download the PostgreSQL image, build a container
with it, and run it. It'll also create the db-postgres-data
volume
(https://docs.docker.com/storage/volumes/) we

configured and a “network” that all the services we put
in the compose.yaml file will be part of. Thanks to the
-d option, it will run in daemon mode; that is, as a
background process. So as soon as it's done, it gives
us control of our terminal back:

$ docker compose up -d

[+] Running 3/3

v Network end-point-blog-dotnet-docker-deploy_default

v Volume "end-point-blog-dotnet-docker-deploy_db-postgre
v Container end-point-blog-dotnet-docker-deploy-db-1

4 G 4

Now that we have a database up and running, we
have a couple of options for connecting to it. If we
have the psql command line client installed in our
machine, we can connect to it directly:

$ psql -h localhost -d vehicle quotes -U vehicle_quotes -W
Password:

psql (16.3 (Ubuntu 16.3-0ubuntu@.24.04.1))

Type "help" for help.

vehicle quotes=#
4 G >

If not, we could first connect to the container, and
then open psql from there:



$ docker compose exec db bash

root@edc@38da3aa4d:/# psql -h localhost -d vehicle_quotes -
Password:

psql (16.3 (Debian 16.3-1.pgdgl20+1))

Type "help" for help.

vehicle _quotes=#

————————————— 4

Notice how we pass db and bash as parameters to
the docker compose exec command. db is the name
of our service, and bash is the command that we wish
to execute within it. In this case we just want to open a
shell, so we use bash .

Nice. That's all it takes to set up the database. Now on
to the applications.

Deploying the admin portal web
app

Like | mentioned before, our code base contains an
admin portal web application. In order to deploy it, we
need first to define an image
(https://docs.docker.com/guides/docker-
concepts/the-basics/what-is-an-image/), which
we'll do with a Dockerfile, and then add the
configuration to run a container
(https://docs.docker.com/guides/docker-
concepts/the-basics/what-is-a-container/) based

on that image using Docker Compose.

The image is a self-contained package that includes all
the software that the application needs to run. It's like
an executable program. One that can be run by
Docker, instead of directly by the operating system. In
order to build images, we use Dockerfiles. For this
ASP.NET app, the Dockerfile will perform two main



tasks: Specify how to build the app and how to run it.
Here's what a Dockerfile for the admin portal project
could look like:

# ./Dockerfile.AdminPortal

# Pull the .NET SDK image from Microsoft's repository. We
# our app. We also give it a name of "build" so that we cg
FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build

# Now we copy all *.csproj files from the code base into
# dotnet restore. This will download and install all the N

CcopPY
CcopY
CcopY
Ccopy
CcopYy
copPy
copPy
copPy

coPY
CoPY
CcopY
CcopY
CcopPY
Ccopy
CcopY

copPy

source/vehicle-quotes
source/VehicleQuotes
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.

RUN dotnet restore

# Next we copy all of the

source/VehicleQuotes
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.

--from=build /app ./

.AdminPortal/.

# various projects require.
WORKDIR /source

.sln .

.AdminPortal/VehicleQuotes.AdminP

Core/VehicleQuotes.Core.csproj .
CreateUser/VehicleQuotes.Createl
IntegrationTests/VehicleQuotes.]
RazorTemplates/VehicleQuotes.Raz
UnitTests/VehicleQuotes.UnitTest
WebApi/VehicleQuotes.WebApi.cspn

source code for all of the proje
./VehicleQuotes.Ad
./VehicleQuotes.Core/

CreateUser/. ./VehicleQuotes.Cre
IntegrationTests/. ./VehicleQuot
RazorTemplates/. ./VehicleQuotes
UnitTests/. ./VehicleQuotes.Unit
WebApi/. ./VehicleQuotes.WebApi

Core/.

# Now that we have everything in place, we use the dotnet
# build the VehicleQuotes.AdminPortal project.

WORKDIR /source/VehicleQuotes.AdminPortal

RUN dotnet publish -c release -o /app --no-restore

# In this last step, notice how we pull a different image
# image that Microsoft recommends to use for running ASP.N
#

# Since by this point we already built the app, and have {
# for it, we don't need the full SDK anymore. dotnet/aspne
# image designed exclusively for running apps. In other wd
# runtime redistributable, not the full SDK.

#

# So here, all we do is copy the build assets from the "bu
# new runtime-only one and put them in a /app directory. T|
# CLI to run the web app's DDL.

FROM mcr.microsoft.com/dotnet/aspnet:8.0
WORKDIR /app

ENTRYPOINT ["dotnet"™, "VehicleQuotes.AdminPortal.dll1l"]
4 G

4




With a Dockerfile like this, we could run the app as a
stand-alone container. However, we don't want to run
it like that. Instead, we want it to be a service that's
deployable via Docker Compose, as part of a bigger
ecosystem. In order to do that, we add the following
to our compose.yaml file.

# ./compose.yaml

services:
# The service is called "admin-portal" because that's th
# contains.
admin-portal:
# This is slightly more complex than the "db" service.
# "image" option to download an off-the-shelf PostgreS
# dockerhub, we use "build" and point to the Dockerfil
# previous step. We also specify the current directory
# context in which the build will be performed.
build:
context:
dockerfile: Dockerfile.AdminPortal
# We also configure this service to restart automaticay
# reason it stops.
restart: always
# "8080" is the default port that ASP.NET Core 8 web 4
# So here, we set it up so that all requests coming tag
# port 8001 get sent to this container's port 8080. Th
# ASP.NET app that's running within.
ports:
- 8001:8080
This part is particular to our app. The admin portal
of uploading files. Here, we're defining a Docker vg
the uploaded files persist across container restarts
linking the host machine's ./uploads directory to th
/app/wwwroot/uploads directory, which is where the u
saved.
volumes:
- ./uploads:/app/wwwroot/uploads
# We can use this section so set any environment varig
# need. In the case of our admin portal here, we set t
# to Development, specify a database connection string
# save the uploaded files.
environment:
- ASPNETCORE_ENVIRONMENT=Development
- ConnectionStrings__ VehicleQuotesContext=Host=db;D3a
- QuotelImagesPath=/app/wwwroot/uploads
# Finally, "entrypoint" specifies the command that shg
# running the container. In this case, this is essenti
# last line of the Dockerfile we saw above.
entrypoint: ["sh", "-c", "dotnet VehicleQuotes.AdminP(g

H o HHHH

4 D 4




With this, we're ready to see the application running,.
Run docker compose up -d again to update the
infrastructure and include the new service:

$ docker compose up -d

[+] Running 2/2
v Container end-point-blog-dotnet-docker-deploy-db-1
v Container end-point-blog-dotnet-docker-deploy-admin-po

<4 4

After a while of downloading and building, navigating
to http://localhost:8001 should show this:

|- Home page - VehicleQuotes.A X -+ o _ il

<« > C O O localhost biked DO L D T Oy =

VehicleQuotes.AdminPortal Home Quotes Privacy

Welcome

Learn about building Web apps with ASP.NET Core.

© 2024 - VehicleQuotes.AdminPortal - Privacy

Adding a maintenance container

At this point, we have a problem though. If we try
clicking on the “Quotes” link in the top navigation bar,
we see this:



- e _

‘(— C O O D localhosta001/Quote b @ T O =

|
A database operation failed while processing the request.

PostgresException: 42P01: relation "quotes” does not exist POSITION: 364
|
|

| Applying existing migrations may resolve this issue

{

| There are migrations that have not been applied to the following database(s):
VehicleQuotesContext

* 20210625212939_AddLookupTables

* 20210625224443_AddUniquelndexesToLookupTables
* 20210625232816_AddVehicleModelTables

* 20210625234824_AddUniquelndexesForVehicleModelTables
* 20210627204444_AddQuoteRulesAndOverridesTables
* 20210627213029_AddQuotesTable

* 20210627230039_AddSeedDataForSizesAndBodyTypes
s 20220530192346_FixDatetimeColumn

« 20220605003253_AddIdentityTables

* 20220609233914_AddUserApiKeysTable

* 20240504211307_VariousNullabilityChanges

* 20240606222539_AddQuotelmages

We need to run the database migrations
(https://learn.microsoft.com/en-

us/ef/core/managing-schemas/migrations/?

tabs=dotnet-core-cli). In order to do that, we need

an environment that has all of our source code and
the full .NET SDK with the Entity Framework Core
(https://learn.microsoft.com/en-us/ef/core/)
command line tool

(https://learn.microsoft.com/en-

us/ef/core/cli/dotnet). That is, an environment that
can build the app and run the .NET CLI. While we
could install that in the host machine and run our

migrations that way; we could also encapsulate itin a
container. That way we get the benefits of portability,
etc.

Of course, that maintenance container needs an
image. And images are defined in Dockerfiles. Here's a
Dockerfile that would serve our purpose:



# ./Dockerfile.Maintenance

# Same as before, we pull the official image that containg
FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build

# Here we install the psql command line client. A useful {
# container meant for system maintenance.
RUN apt-get update && export DEBIAN_FRONTEND=noninteractiyV

&& apt-get -y install --no-install-recommends postgres

# We also install the dotnet-ef tool which allows us acces
# managing the database and migrations.
RUN dotnet tool install dotnet-ef --global
ENV PATH="$PATH:/root/.dotnet/tools"

# Finally, we copy all of our source code.
WORKDIR /source

COPY source/vehicle-quotes.sln .

copPy
copPy
copPy
copPy
copPy
COPY
COPY

source/VehicleQuotes

.AdminPortal/VehicleQuotes.AdminP
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.

Core/VehicleQuotes.Core.csproj .
CreateUser/VehicleQuotes.Createl
IntegrationTests/VehicleQuotes.I
RazorTemplates/VehicleQuotes.Raz
UnitTests/VehicleQuotes.UnitTest
WebApi/VehicleQuotes.WebApi.cspn

RUN dotnet restore

COPY
COPY
COoPY
COPY
COoPY
CoPY
corPYy

source/VehicleQuotes
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.

.AdminPortal/. ./VehicleQuotes.Ad
Core/. ./VehicleQuotes.Core/

CreateUser/. ./VehicleQuotes.Cre
IntegrationTests/. ./VehicleQuot
RazorTemplates/. ./VehicleQuotes
UnitTests/. ./VehicleQuotes.Unift
WebApi/. ./VehicleQuotes.WebApi

# No ENTRYPOINT here because there's no specific command {

4 G 4

This Dockerfile is very similar to the first portion of the
one for the admin portal. It essentially creates a .NET
development environment. Notice how it doesn't
include an ENTRYPOINT command. This is expected, as
this container’s purpose is to allow us to connect to it
to run any number of maintenance tasks on demand.
There isn't really any process that it needs to run upon
start.

Now, we want to deploy the maintenance container
when we do docker compose up -d . To that end, we
add the following to the services section in our

compose.yaml file:



# ./compose.yaml
services:
# ...

maintenance:
# Similar to the admin-portal, we specify the context
# build the image.
build:
context:
dockerfile: Dockerfile.Maintenance
# The maintenance tasks will need to know where to fin
# set the connection string environment variable.
environment:
- ConnectionStrings__ VehicleQuotesContext=Host=db;D3a
"sleep infinity" here makes sure the container doesn
after starting up, which is the expected behavior wh
start up command or has a command that just runs and
opposed to a long running service, like a web app.
command: sleep infinity

HoH HH

# ...
4 D 4

With these additions, running docker compose up -d
again will result in the new maintenance container
being created:

$ docker compose up -d

[+] Running 3/3

v Container end-point-blog-dotnet-docker-deploy-admin-po
v Container end-point-blog-dotnet-docker-deploy-db-1

v Container end-point-blog-dotnet-docker-deploy-maintena

e —————— 4

Now we can finally connect to the brand new
maintenance container:

$ docker compose exec maintenance bash
root@14613bcf1756:/sourcet

Then inspect the status of the migrations:



root@14613bcf1756:/source# dotnet ef migrations list -s .
Build started...
Build succeeded.

20210625212939 AddLookupTables (Pending)

20210625224443 AddUniqueIndexesToLookupTables (Pending)
20210625232816_AddVehicleModelTables (Pending)
20210625234824 AddUniqueIndexesForVehicleModelTables (Pend
20210627204444 AddQuoteRulesAndOverridesTables (Pending)
20210627213029 AddQuotesTable (Pending)

20210627230039 AddSeedDataForSizesAndBodyTypes (Pending)
20220530192346 FixDatetimeColumn (Pending)
20220605003253_AddIdentityTables (Pending)
20220609233914 AddUserApiKeysTable (Pending)
20240504211307_ VariousNullabilityChanges (Pending)
20240606222539 AddQuoteImages (Pending)
root@14613bcf1756:/source#

4 4

And run them:

root@14613bcf1756:/source# dotnet ef database update -s .
Build started...
Build succeeded.

Done.
root@14613bcf1756:/sourcet

4 G 4

With that done, we can now go to the browser again
and bring up the http://localhost:8001/Quotes page.
Which now looks like this:

|- Index - VehicleQuotes AdminFc X + = (m} X
&« C @ QO DO locathost oy Dy @ 3 a =

‘ VehicleQuotes.AdminPortal Home Quotes Privacy

Index

Year Make  Model ItMoves HasKey HasTitle RequiresPickup OfferedQuote CreatedAt

© 2024 - VehicleQuotes.AdminPortal - Privacy




An empty—but working—page for listing database

records!

Deploying the web API

Now let’s look at how to deploy another of our
system'’s runtime components: the web API. The

process of setting this up is nearly identical to the
admin portal's. After all, both are ASP.NET Core web
applications. Really, the only difference is that one
serves HTML and the other serves JSON. To the
runtime, they are the same type of thing. And sure

enough, here’s the web API's Dockerfile:

COoPY
CoPY
CoPY
CopPY
CoPY
CoPY
CoPY
CoPY

copPYy
copPy
copPy
CoPY
COPY
COPY
CoPY

copPYy

# ./Dockerfile.WebApi
FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build
WORKDIR /source
# copy sln and csproj files and restore
source/vehicle-quotes.sln .

.AdminPortal/VehicleQuotes.AdminP
source/VehicleQuotes.

source/VehicleQuotes

source/VehicleQuotes

# copy everything else

source/VehicleQuotes

source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.

# build app
WORKDIR /source/VehicleQuotes.WebApi
RUN dotnet publish -c release -o /app --no-restore

# final image
FROM mcr.microsoft.com/dotnet/aspnet:8.0
WORKDIR /app

--from=build /app ./

ENTRYPOINT ["dotnet", "VehicleQuotes.WebApi.dll"]
4 G >

.CreateUser/VehicleQuotes.Createl
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
source/VehicleQuotes.
RUN dotnet restore

.AdminPortal/.

Core/VehicleQuotes.Core.csproj .

IntegrationTests/VehicleQuotes.]
RazorTemplates/VehicleQuotes.RaZ
UnitTests/VehicleQuotes.UnitTest
WebApi/VehicleQuotes.WebApi.cspn

./VehicleQuotes.Ad
./VehicleQuotes.Core/

CreateUser/. ./VehicleQuotes.Cre
IntegrationTests/. ./VehicleQuot
RazorTemplates/. ./VehicleQuotes
UnitTests/. ./VehicleQuotes.Unit
WebApi/. ./VehicleQuotes.WebApi

Core/.




Very similar to the admin portal's Dockerfile. The only
differences are the sections for building and running
the app towards the end of the file, on account of the
directories and resulting DDL name being different.
Other than that, they are pretty much identical.

Same story on the Docker Compose side of things:

# ./compose.yaml
services:
#...

web-api:
build:
context:
dockerfile: Dockerfile.WebApi
restart: always
# We want to expose this service in a different port t
# we chose 8002.
ports:
- 8002:8080
# A different set of environment variables, but the st
environment:
- ASPNETCORE_ENVIRONMENT=Development
- ConnectionStrings__ VehicleQuotesContext=Host=db;Dg
- MailSettings__Server=SMTP_SERVER_URL
- MailSettings_ Port=2525
- MailSettings__SenderName=Vehicle Quotes
- MailSettings__SenderEmail=info@vehiclequotes.com
- MailSettings__UserName=SMTP_SERVER_USER_NAME
- MailSettings__ Password=SMTP_SERVER_PASSWORD
# The entrypoint command is different because the DLL
# name.
entrypoint: ["sh", "-c", "dotnet VehicleQuotes.WebApi.

#...
4 D 4

It has the same overall setup as the admin portal. This
time we've chosen a different port, configured a
different set of environment variables

(https://en.wikipedia.org/wiki/Environment_variable),

and run the web API's DLL. Other than that, it's the
same. Now docker compose up -d can be run again,
and after a while you should see:



$ docker compose up -d

[+] Running 4/4
v Container end-point-blog-dotnet-docker-deploy-web-api-]
v Container end-point-blog-dotnet-docker-deploy-maintena
v Container end-point-blog-dotnet-docker-deploy-db-1

v Container end-point-blog-dotnet-docker-deploy-admin-po
4 G >

The web API has a Swagger Ul

(https://swagger.io/tools/swagger-ui/) that should

now be accessible at http://localhost:8002/swagger :

QO DO locathost

EE e E XL NGO VehicleQuotes v1 v

VehicleQuotes @ %2

Iswaggerhv/swaggerjson

BodyTypes A~

Excellent. We now have a very basic implementation
of our deployment strategy. We have managed to
build and run all the apps we need. We also have a
special container with a full development environment
that we can use to perform a number of maintenance
tasks. However, there are various issues that we still
need to address. Let's do that next.

Looking at the logs

Before that, though, let's look at the logs being
produced by the applications that have been
deployed. You can see the logs for the entire system
with:



|docker compose logs -f

That command produces a single log stream with
messages from all the services. To look at the logs of a
particular service, all we need to do is specify the
service name. For example docker compose logs db -

f O docker compose logs web-api -f.

That's all there is to it as far as logs go. However, if we
look at the logs for our current deployment, they
reveal the first issue that we need to attend to...

Persisting data protection keys

If we look at the logs of the admin portal or web API
containers, we see messages like this:

web-api-1 | warn: Microsoft.AspNetCore.DataProtectic
web-api-1 | Storing keys in a directory '/root
4 D 4

As it turns out, the data protection subsystem
(https://learn.microsoft.com/en-

us/aspnet/core/security/data-

protection/introduction?view=aspnetcore-8.0) in
ASP.NET Core (which is used for cookies and the like)
depends on the app being able to store and persist

files. As the message says, this is problematic for
containers. Because upon container destruction,
which is a usual and expected part of a container’s
lifecycle, the internal container’s file system gets wiped
out. That is, unless we use Docker volumes

(https://docs.docker.com/storage/volumes/) to

store the files that should persist beyond a particular
container’s life. So, in order to get rid of these

warnings, that's exactly what we're going to have to
do.



First we create a data-protection-keys directory in
our host machine. And inside it, we create one
directory for each of the ASP.NET Core apps. It ends
up looking like this:

data-protection-keys/

I: admin-portal
web-api

Next we have to make sure the apps in the containers
have access to these directories. In order to do that,
we need to configure the compose.yaml so that it
creates new Docker volumes that are linked to those
locations:

# ./compose.yaml

services:
admin-portal:
#...
volumes:
- ./data-protection-keys/admin-portal:/data-protecti
#...

web-api:
#...
volumes:
- ./data-protection-keys/web-api:/data-protection-ke
#...
#...

E—— 4

This means that, for example, whenever an app in the
container references /data-protection-keys/admin-
portal ; it will actually be accessing the ./data-
protection-keys/admin-portal directory in the host
machine. Same deal for the web-api one.

We also need to configure the applications
themselves so that they store their data protection
keys in the locations that we've created. For that, we
add environment variables for the containers to set
the paths:



# ./compose.yaml

services:
admin-portal:
#...
environment:
- AdminPortalDataProtectionKeysPath=/data-protection
#...

web-api:
#...
environment:
- WebApiDataProtectionKeysPath=/data-protection-keys
#...
#...

( 4

And add the following code to each of the apps’
Program.cs files:

// ./source/VehicleQuotes.AdminPortal/Program.cs

builder.Services.AddDataProtection().PersistKeysToFileSyst
new DirectoryInfo(
builder.Configuration["AdminPortalDataProtectionKg
throw new InvalidOperationException("Config se
)
)s
4 G >

// ./source/VehicleQuotes.WebApi/Program.cs

builder.Services.AddDataProtection().PersistKeysToFileSyst
new DirectoryInfo(
builder.Configuration["WebApiDataProtectionKeysPat
throw new InvalidOperationException("Config se
)
)s
4 G >

There isn't much to comment about the code really.
It's just some .NET boilerplate to configure that
specific detail of the data protection services. It also

makes sure that the values are always present. Errors
are raised if not.

Now that everything is wired up like that, we can hit
docker compose up -d --build and the warning
message should be gone if we ook at the logs.



Notice how we used the --build option this time.
That tells Docker that it needs to rebuild the images
from scratch. Image rebuild means running through
the Dockerfiles again. And that means running dotnet
build again. In short, we have to do this to make sure
that the code changes that we made are included in
the new builds.

Storing sensitive information with
secrets

Another issue that we need to address is how to
handle sensitive information like passwords in our
config files. So far we've been putting them in plain
text in compose.yaml . The problem with this is that this
file is meant to be pushed to version control and we
don't want passwords in there. The spread of sensitive
information like that should be more controlled.
|deally, we'd store them in files that never leave the
server where the system is deployed.

Docker Compose has a feature that works just like
that. Through Docker Compose secrets
(https://docs.docker.com/compose/use-secrets/),

we can create text files outside of the compose.yaml
and put the database password and connection string
in them. These files will live only in the server, never
uploaded to version control.

Let's create a new secrets directory and create these
two files within it:

./secrets/vehicle-quotes-db-connection-

string.txt :



4

Host=db;Database=vehicle_quotes;Username=vehicle

4

./secrets/vehicle-quotes-db-password.txt :

|password

Ending up looking like this:

secrets/
t:: vehicle-quotes-db-connection-string.txt
vehicle-quotes-db-password.txt

Now, at the bottom of compose.yaml , we add a new
secrets section:

# ./compose.yaml

#...

secrets:
vehicle-quotes-db-password:

file: ./secrets/vehicle-quotes-db-password.txt
vehicle-quotes-db-connection-string:

4

file: ./secrets/vehicle-quotes-db-connection-string.tx

4

Then we include the secrets in the services that need

them:



# ./compose.yaml

services:
admin-portal:
#...
secrets:
- vehicle-quotes-db-connection-string
#...

web-api:
#...
secrets:
- vehicle-quotes-db-connection-string
#...

db:
#...
secrets:
- vehicle-quotes-db-password
#...

maintenance:
#...
secrets:
- vehicle-quotes-db-connection-string
#...

With this, Docker Compose will add files in the
resulting containers under the /run/secrets/
directory with the contents of their referenced
secrets. So, for example, in the case of the admin-
portal Container,a /run/secrets/vehicle-quotes-db-
connection-string file will be created in the
container’s internal file system, with the same
contents as the ./secrets/vehicle-quotes-db-
connection-string.txt file. Similar thing for the others.

Now that the secrets are materialized as files within
the containers, let's see how we put them to use.

For the admin-portal container, we injected the
vehicle-quotes-db-connection-string secretinto it.
This file contains the database connection string. And
we need to pass that to the running app via an
environment variable. In order to do so, we can
change the entrypoint command to this:



# ./compose.yaml

services:
admin-portal:
#...
entrypoint: [
"sh", "-c",
"export ConnectionStrings__ VehicleQuotesContext=$(cat
dotnet VehicleQuotes.AdminPortal.dll"

]

#...
{ G 4

We've modified the command to set the
ConnectionStrings_ VehicleQuotesContext to the
contents of the /run/secrets/vehicle-quotes-db-
connection-string file. The export command defines
the environment variable for this particular command;
and the $(cat ...) partreturns the contents of the
file.

We should also remove the
ConnectionStrings_ VehicleQuotesContext variable
from the admin-portal Service's environment section.

For the web-api service, we do the same thing. The
only difference is that its entrypoint command calls
for vehicleQuotes.WebApi.dll instead of
VehicleQuotes.AdminPortal.d1ll .

For the db service, the setup is a little different. A little
simpler in fact. The official PostgreSQL image has a
shortcut for specifying the database user password
via Docker Compose secrets. All we need to do is
define this new POSTGRES_PASSWORD_FILE environment
variable and remove the POSTGRES_PASSWORD OnNe:



# ./compose.yaml

services:
#...

db:
#...
environment:
- POSTGRES_PASSWORD_FILE=/run/secrets/vehicle-quotes-d
# - POSTGRES_PASSWORD=password <-- remove this on€g
#

( —————— b

Try docker compose up -d again and test the apps.
Everything should still work well.

In the maintenance container, we also have to remove
the ConnectionStrings_ VehicleQuotesContext
environment variable. That unfortunately means that
the connection string will no longer be automatically
available for us to run database related tasks. Just like
other containers, it will be in a /run/secrets/vehicle-
quotes-db-connection-string file. SO, whenever we
want to interact with the database, like when running
migrations, we need to manually export the variable.
Something like this:

$ docker compose exec maintenance bash
root®@2732a06871c@:/source# export ConnectionStrings_ Vehid
root@2732a06871c0@:/source# dotnet ef migrations list -s .
Build started...

Build succeeded.

4 G 4

Parameterizing compose.yaml to
support multiple deployment
environments

A common requirement when deploying applications
is to be able to do so in multiple environments.
There's generally a “live” or “production” environment



where the system runs and end users access it. There
can also be others: staging, test, development, etc.
Ideally, we'd use the same set of Docker and Compose
files, with slight changes, in order to deploy variants of
the system depending on the environment.

Some settings like ports, passwords, or SMTP
credentials are the types of things that usually vary

per environment. Luckily for us, Docker Compose
supports .env files
(https://docs.docker.com/compose/environment-

variables/variable-interpolation/) that can be

used to parameterize certain aspects of the

compose.yaml file.

We can extract the values that vary from our
compose.yaml file, and put them in a separate .env
file that looks like this:

ADMIN_PORTAL_PORT=8001

WEB_API_PORT=8002

DB_PORT=5432

POSTGRES_DB=vehicle_quotes
POSTGRES_USER=vehicle quotes

MailSettings__ Server=SMTP_SERVER_URL
MailSettings_ Port=2525
MailSettings__SenderName=Vehicle Quotes
MailSettings__ SenderEmail=info@vehiclequotes.com
MailSettings__ UserName=SMTP_SERVER_USER_NAME
MailSettings__ Password=SMTP_SERVER_PASSWORD

Here we have the ports that we want to expose the
various services on, the database name and user
name, and some email delivery settings. This file wont
be pushed to version control, and each deployment
will have its own version of it.

The compose.yaml file can reference the values
defined in the .env file using the following syntax:
${VAR_NAME} . Here's how we change our



compose.yaml to take advantage of the settings
defined in the .env file:

# ./compose.yaml

services:
admin-portal:
#..
ports:
- ${ADMIN_PORTAL_PORT}:8080
#...

web-api:
#...
ports:
- ${WEB_API PORT}:8080
#...
environment:

- MailSettings__Server=${MAIL_SETTINGS_SERVER}
- MailSettings__ Port=${MAIL_SETTINGS_PORT}
- MailSettings__SenderName=${MAIL_SETTINGS_SENDER_NA
- MailSettings__ SenderkEmail=${MAIL_SETTINGS_SENDER_H
- MailSettings_ UserName=${MAIL_SETTINGS_USER_NAME}
- MailSettings_ Password=${MAIL_SETTINGS_ PASSWORD}
#...

db:

#...

ports:
- ${DB_PORT}:5432

#...

environment:
- POSTGRES_DB=${POSTGRES_DB}
- POSTGRES_USER=${POSTGRES_USER}
#...

#...

#...
4 4

Once again, we can run docker compose up -d and
everything should be fine.

Waiting for the database to be
ready

Sometimes some services need to wait for others to
come online before they can start up. A common
scenario is to wait for the database to be ready before
running apps that depend on it. We can do that in



Docker Compose thanks to the depends_on and

healthcheck settings
(https://docs.docker.com/compose/startup-
order/). We can update our compose.yaml SO that the
admin portal and web API services only start after the
database is up and running and ready to receive
requests. Here's how:

# ./compose.yaml

services:
admin-portal:
#...
# This specifies that the admin-portal service depends
# healthy in order to start up. The db service's healt
# it determines whether it is healthy or not.
depends_on:
db:
condition: service_healthy

web-api:
#...
# Exact same setting as the one in admin-portal.
depends_on:
db:
condition: service_healthy

db:

#...
# Here we configure this service to offer a healthched
# can use to determine if it's ready to be depended up
# leverage PostgreSQL's pg isready tool. It is called
# timeout, at the specified interval, and with as many
# in the settings below.
healthcheck:

test: "pg_isready -U ${POSTGRES_USER}"

interval: 10s

timeout: 5s

retries: 5

#...
4 D 4

The most interesting part is the healthcheck setting in
the db service which leverages a PostgreSQL-
specific tool

(https://www.postgresql.org/docs/current/app-
pg-isready.html) to check whether the database is




ready. Other software will have other methods to do
checks like this, but PostgreSQL's is thankfully pretty
straightforward.

Serving the apps with NGINX

Another common pattern for serving web applications
is to use NGINX (https://nginx.org/en/) as a

reverse proxy

(https://docs.nginx.com/nginx/admin-
guide/web-server/reverse-proxy/) that funnels
HTTP traffic coming from the internet into the

application. As you may have noticed, we haven't
talked about HTTPS so far. This aspect is something
that can be elegantly handled by NGINX as well. In this
last section we see how we can set up NGINX to
expose our apps to the world.

First, we need to create some custom items in the
default NGINX configuration file. Its default location
will depend on the OS version and flavor you installed
NGINX on, but for Rocky Linux
(https://rockylinux.org/) 9, it usually lives in

/etc/nginx/nginx.conf . First, we need to declare our
upstream servers that will point to the ports where
the web APl and admin portals are listening:

upstream admin_portal {
server localhost:8001;

}

upstream web_api {
server localhost:8002;
¥

Then, we will add a server that listens in the standard
port 80 and proxies the /admin and /api URLs to the
admin_portal and web_api upstream servers



respectively:

server {
listen 89;
server_name vehiclequotes.com;

location /admin {
proxy_pass http://admin_portal;
proxy_http_version 1.1;
proxy_set_header Connection keep-alive;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forw
proxy_set_header X-Forwarded-Proto $scheme;

}

location /api {
proxy_pass http://web_api;
proxy_http_version 1.1;
proxy_set_header Connection keep-alive;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy add x_forw
proxy_set_header X-Forwarded-Proto $scheme;
¥
}
4 D 4

Those are the basic settings needed to serve our
applications in a single domain through different
locations. This allows having a live frontend application
that will eventually consume our APl endpoints that
lives in the same server and domain, avoiding possible
Cross-Origin Resource Sharing (CORS) issues when
establishing the workflow between the different web
applications.

If we also have an SSL certificate that we want to use
to securely serve our apps, we can use a free service
such as Let’s Encrypt (https://letsencrypt.org/) to

create it. Once we're in possession of the certificate
files and placed them on the server, we need to
perform a few extra tweaks to our nginx.conf file,

First, let's make our server listen on port 443
(HTTPS), and point to our .cer and .key filesin
the updated entry:



server {
listen 443 ssl;
server_name vehiclequotes.com;
ssl_certificate /etc/certs/live/vehiclequotes.com/full
ssl_certificate_key /etc/certs/live/vehiclequotes.com

location /admin {
proxy_pass http://admin_portal;
proxy_http_version 1.1;
proxy_set_header Connection keep-alive;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_foru
proxy_set_header X-Forwarded-Proto $scheme;

}

location /api {
proxy_pass http://web_api;
proxy_http_version 1.1;
proxy_set_header Connection keep-alive;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forw
proxy_set_header X-Forwarded-Proto $scheme;

}
}
k. — 4

Second, let's add a new server for port 80 (non-
HTTPS) that will redirect permanently to our new
secure location:

server {
listen 80;
server_name vehiclequotes.com;
return 301 https://$server_name$request_uri;

Finally, let's restart the NGINX service to apply our
changes. The command that restarts the service
will vary depending on the OS we're running on
the server. For Rocky Linux 9, we can do that by
running the command sudo systemctl restart

nginx .

You can find the resulting nginx.conf
(https://github.com/megakevin/end-point-blog-

dotnet-docker-deploy/blob/main/nginx.conf) file

in the project’s repo
(https://github.com/megakevin/end-point-blog-
dotnet-docker-deploy/) in GitHub.




That’s all for now

And that's it! In this article, we've seen how we can
approach deploying a .NET system into production
using Docker Compose.

We saw how to organize the code and configuration
files using Git submodules. We addressed a few
important edge cases and gotchas like properly
configuring Data Protection keys, having a container
for performing maintenance tasks, ensuring certain
files persist across restarts, and bringing up services
in a certain order via depends_on settings.

We even saw how to allow our web applications to be
accessible to the outside world with NGINX through a
set of reverse proxying rules, and as a bonus, to be
securely served with SSL.

dotnet (/blog/tags/dotnet/)
aspdotnet (/blog/tags/aspdotnet/)
csharp (/blog/tags/csharp/)
docker (/blog/tags/docker/)

nginx (/blog/tags/nginx/)

Comments

Visit the GitHub Issue
(https://github.com/EndPointCorp/end-point-
blog/issues/2064) to comment on this post.




om/com Pa ny/e.nd— (https:./x.com/endpointdev) (https:./instagram.com/endpointcorporation)
point-corporation)

© 2025 End Point Corporation



